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Abstract—The paper presents a new framework for complex
Support Vector Regression as well as Support Vector Machines
for quaternary classification. The method exploits the notion
of widely linear estimation to model the input-out relation for
complex-valued data and considers two cases: a) the complex data
are split into their real and imaginary parts and a typical real
kernel is employed to map the complex data to a complexified
feature space and b) a pure complex kernel is used to directly
map the data to the induced complex feature space. The recently
developed Wirtinger’s calculus on complex reproducing kernel
Hilbert spaces (RKHS) is employed in order to compute the
Lagrangian and derive the dual optimization problem. As one
of our major results, we prove that any complex SVM/SVR task
is equivalent with solving two real SVM/SVR tasks exploiting
a specific real kernel which is generated by the chosen complex
kernel. In particular, the case of pure complex kernels leads to the
generation of new kernels, which have not been considered before.
In the classification case, the proposed framework inherently
splits the complex space into four parts. This leads naturally
in solving the four class-task (quaternary classification), instead
of the typical two classes of the real SVM. In turn, this rationale
can be used in a multiclass problem as a split-class scenario
based on four classes, as opposed to the one-versus-all method;
this can lead to significant computational savings. Experiments
demonstrate the effectiveness of the proposed framework for
regression and classification tasks that involve complex data.

Index Terms—Support Vector Machines, complex valued data,
complex kernels, widely linear estimation, regression, classifica-
tion

I. INTRODUCTION

The SVM framework has become a popular toolbox for

addressing real world applications that involve non-linear

classification and regression tasks. In its original form, the

SVM method is a nonlinear generalization of the Generalized

Portrait algorithm, which has been developed in the former

USSR in the 1960s. The introduction of non-linearity was

carried out via a computationally elegant way known today

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This research has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Pro-
gram Education and Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Aristeia I: 621.

P. Bouboulis is with the Department of Informatics and Telecommunica-
tions, University of Athens, Greece, e-mail: panbouboulis@gmail.com.

S. Theodoridis is with the Department of Informatics and Telecommunica-
tions, University of Athens, Greece, and the Research Academic Computer
Technology Institute, Patra, Greece. e-mail: stheodor@di.uoa.gr.

Ch. Mavroforakis is with the Department of Computer Science, Data
Management Lab, Boston University, Boston, MA 02215, USA. e-mail:
cmav@bu.edu.

L. Dalla is with the Department of Mathematics, University of Athens,
Greece. email: ldalla@math.uoa.gr.

as the kernel trick [1]. Usually, this trick is applied in a black-

box rationale, where one simply replaces dot products with a

positive definite kernel function. The successful application

of the kernel trick in SVMs has sparked a new breed of

technics for addressing non linear tasks, the so called kernel-

based methods. Currently, kernel-based algorithms constitute

a popular tool employed in a variety of scientific domains,

ranging from adaptive filtering [2], [3] and image processing to

biology and nuclear physics [1], [4]–[18]. The key mathemat-

ical notion underlying these methods is that of RKHS. These

are inner product spaces in which the pointwise evaluation

functional is continuous. Through the kernel trick, the original

data are transformed into a higher dimensional RKHS H
(possibly of infinite dimension) and linear tools are applied

to the transformed data in the so called feature space H. This

is equivalent to solving a non-linear problem in the original

space. Furthermore, inner products in H can efficiently be

computed via the specific kernel function κ associated with

the RKHS H, disregarding the actual structure of the space.

Recently, this rationale has been generalized, so that the task

simultaneously learns the so called kernel in some fashion,

instead of selecting it a priori, in the context of multiple kernel

learning (MKL) [19]–[22].

Although the theory of RKHS has been developed by

mathematicians for general complex spaces, most kernel-based

methods employ real kernels. This is largely due to the fact

that many of them originated as variants of the original SVM

formulation, which was targeted to treat real data. However, in

modern applications, complex data arise frequently in areas as

diverse as communications, biomedicine, radar, etc. Although

all the respective algorithms that employ complex data (e.g.,

in communications) can also be cast in the real domain

(disregarding any type of complex algebra), by splitting the

complex data into two parts and working separately, this ap-

proach usually leads to more intricate expressions and tedious

calculations. The complex domain provides a convenient and

elegant representation for such data, but also a natural way

to preserve their characteristics and to handle transformations

that need to be performed.

Hence, the design of SVMs suitable for treating problems

of complex and/or multidimensional outputs has attracted

some attention in the machine learning community. Perhaps

the most complete works, which attempt to generalize the

SVM rationale in this fashion, are a) Clifford SVM [23] and

b) division algebraic SVR [24]–[26]. In Clifford SVM, the

authors use Clifford algebras to extend the SVM framework

to multidimensional outputs. Clifford algebras belong to a

type of associative algebras, which are used in mathematics to
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generalize the complex numbers, quaternions and several other

hypercomplex number systems. On the other hand, in division

algebraic SVR, division algebras are employed for the same

purpose. These are algebras, closely related to the Clifford

algebras, where all non-zero elements have multiplicative

inverses. In a nutshell, Clifford algebras are more general and

they can be employed to create a general algebraic framework

(i.e., addition and multiplication operations) in any type of

vector spaces (e.g., R, R2, R3, . . . ), while the division algebras

are only four: the real numbers, the complex numbers (R2),

the quaternions (R4) and the octonions (R8). This is due

to the fact that the need for inverses can only be satisfied

in these four vector spaces. Although Clifford algebras are

more general, their limitations (e.g., the lack of inverses) make

them a difficult tool to work with, compared to the division

algebras. Another notable attempt that pursues similar goals

is the multiregression SVMs of [27], where the outputs are

represented simply as vectors and an ǫ-insensitive loss function

is adopted. Unfortunately this approach does not result in a

well defined dual problem. In contrast to the more general

case of hyper-complex outputs, where applications are limited

[28], complex valued SVMs have been adopted by a number

of authors for the beamforming problem (e.g., [29], [30]),

although restricted to the simple linear case.

It is important to emphasize that most of the aforementioned

efforts to apply the SVM rationale to complex and hyper-

complex numbers are limited to the case of the output data1.

These methods consider a multidimensional output, which

can be represented, for example, as a complex number or

a quaternion, while the input data are real vectors. In some

cases, complex input data are considered as well, but in a

rather trivial way, i.e., splitting the data into their real and

imaginary parts. Moreover, these methods employ real valued

kernels to model the input-out relationship, breaking it down

to its multidimensional components. However, in this way

many of the rich geometric characteristics of complex and

hypercomplex spaces are lost.

In this paper, we adopt an alternative rationale. To be in

line with the current trend in complex signal processing, we

employ the so-called widely linear estimation process, which

has been shown to perform better than the conventional linear

estimation process [31]–[35]. This means that we model the

input-out relationship as a sum of two parts. The first is linear

with respect to the input vector, while the second is linear

with respect to its conjugate. Furthermore, we consider two

cases to generalize the SVM framework to complex spaces.

In the first one, the data are split into their real and imaginary

parts and typical well established real kernels are employed to

map the data into a complexified RKHS. This scenario bears

certain similarities with other preexisting technics that also

split the output into two parts (e.g., [25]). The difference with

our technique is that the widely linear estimation process is

employed to model the input-out relationship of the SVM.

In the second case, the modeling takes place directly into

complex RKHS, which are generated by pure complex ker-

1In [?] the authors consider also a Gabor kernel function which takes
multivector inputs.

nels2, instead of real ones. In that fashion, the geometry of

the complex space is preserved. Moreover, we show that in

the case of complex SVMs, the widely linear approach is a

necessity, as the alternative path would lead to a significantly

restricted model. In order to compute the gradients, which

are required by the Karush-Kuhn-Tucker (KKT) conditions

and the dual, we employ the generalized Wirtinger Calculus

introduced in [16]. As one of our major results, we prove that

working in a complex RKHS H, with a pure complex kernel

κC, is equivalent to solving two problems in a real RKHS H,

albeit with a specific real kernel κR, which is induced by the

complex κC. It must be pointed out that these induced kernels

are not trivial. For example, the exploitation of the complex

Gaussian kernel results in an induced kernel different from the

standard real Gaussian RBF.

To summarize, the main contribution of our work is the

development of a complete mathematical framework suitable

for treating any SVR/SVM task, that involves complex data,

in an elegant and uniform manner. Moreover, we provide a

new way of treating a special multi-classification problem (i.e.,

quaternary classification). Our emphasis in this paper is to

outline the theoretical development and to verify the validity

of our results via some simulation examples. The paper is

organized as follows: In Section II the main mathematical

background regarding RKHS is outlined and the differences

between a real RKHS and a complex RKHS are highlighted.

The main contributions of the paper can be found in Sections

III and IV, where the theory and the generalized complex SVR

and SVM algorithms are developed, respectively. The complex

SVR developed there, is suitable for general complex valued

function estimation problems defined on complex domains.

The proposed complex SVM rationale, on the other hand,

is suitable for quaternary (i.e., four class) classification, in

contrast to the binary classification carried out by the real

SVM approach. The experiments that are presented in Section

V demonstrate certain cases where the use of the pure com-

plex Gaussian kernel in the SVR rationale offers significant

advantages over the real Gaussian kernel. In the SVM, besides

the new case of quaternary classification, experiments also

show how the exploitation of complex data improves the

classification accuracy. Finally, Section VI contains some

concluding remarks.

II. REAL AND COMPLEX RKHS

We devote this section to present the notation that is

adopted in the paper and to summarize the basic mathematical

background regarding RKHS. Throughout the paper, we will

denote the set of all integers, real and complex numbers by

N, R and C, respectively. The imaginary unit is denoted as i,
while z∗ denotes the conjugate of z. Vector or matrix valued

quantities appear in boldfaced symbols.

An RKHS [36] is a Hilbert space H over a field F for which

there exists a positive definite kernel function κ : X ×X → F

with the following two important properties: a) For every

2The term “pure complex kernels” refers to complex valued kernels with
complex variables, that are complex analytic.
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x ∈ X , κ(·, x) belongs to H and b) κ has the so called repro-

ducing property, i.e., f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, in

particular κ(x, y) = 〈κ(·, y), κ(·, x)〉H. The map Φ : X → H :
Φ(x) = κ(·, x) is called the feature map of H. In the case of

complex spaces (i.e., F = C) the inner product is sesqui-linear

(i.e., linear in one argument and antilinear in the other) and

Hermitian, i.e., κ(x, y) = (〈κ(·, x), κ(·, y)〉H)
∗
= κ∗(y, x).

In the real case, however, this is simplified to κ(x, y) =
〈κ(·, y), κ(·, x)〉H = 〈κ(·, x), κ(·, y)〉H. In the following, we

will denote by H a complex RKHS and by H a real RKHS.

Moreover, in order to distinguish the two cases, we will use

the notations κR and ΦR to refer to a real kernel and its

corresponding feature map, instead of the notation κC, ΦC,

which is reserved for pure complex kernels.

A variety of kernel functions can be found in the re-

spective literature [1], [4], [6], [37], [38]. In this pa-

per we will use the popular real Gaussian kernel, i.e.,

κRν ,t(x,y) := exp
(

−t
∑ν

k=1
(xk − yk)

2
)

, defined for x,y ∈
R

ν , and the complex Gaussian kernel, i.e., κCν ,t(z,w) :=
exp

(

−t
∑ν

k=1
(zk − w∗

k)
2
)

, where z,w ∈ Cν , zk denotes the

k-th component of the complex vector z ∈ Cν and exp(·) is

the extended exponential function in the complex domain. In

both cases t is a free positive parameter that controls the shape

of the kernel.

Besides the complex RKHS produced by the associated

complex kernels, such as the aforementioned ones, one may

construct a complex RKHS as a Cartesian product of a real

RKHS with itself, in a fashion similar to the identification

of the field of complex numbers, C, to R2. This technique

is called complexification of a real RKHS and the respective

Hilbert space is called complexified RKHS. Let X ⊆ Rν

and define the spaces X 2 ≡ X × X ⊆ R
2ν and X =

{x+ iy;x,y ∈ X} ⊆ Cν , where the latter is equipped with

a complex inner product structure. Let H be a real RKHS

associated with a real kernel κR defined on X 2 ×X 2 and let

〈·, ·〉H be its corresponding inner product. Then, every f ∈ H
can be regarded as a function defined on either X 2 or X,

i.e., f(z) = f(x + iy) = f(x,y). Moreover, we define the

Cartesian product of H with itself, i.e., H2 = H×H. It is easy

to verify that H2 is also a Hilbert space with inner product

〈f , g〉H2 = 〈f r, gr〉H + 〈f i, gi〉H, (1)

for f = (f r, f i), g = (gr, gi). Our objective is to enrich H2

with a complex structure (i.e., with a complex inner product).

To this end, we define the space H = {f = f r+ if i; f r, f i ∈
H} equipped with the complex inner product:

〈f, g〉H = 〈f r, gr〉H + 〈f i, gi〉H + i
(

〈f i, gr〉H − 〈f r, gi〉H
)

,
(2)

for f = f r + if i, g = gr + igi. It is not difficult to verify

that the complexified space H is a complex RKHS with kernel

κ [38]. We call H the complexification of H. It can readily

be seen, that, although H is a complex RKHS, its respective

kernel is real (i.e., its imaginary part is equal to zero). To

complete the presentation of the complexification procedure,

we need a technique to implicitly map the data samples from

the complex input space to the complexified RKHS H. This

can be done using the simple rule:

Φ̄C(z) = Φ̄C(x+ iy) = Φ̄C(x,y)
= ΦR(x,y) + iΦR(x,y),

(3)

where ΦR is the feature map of the real reproducing kernel

κR, i.e., ΦR(x,y) = κR(·, (x,y)) and z = x + iy. As a

consequence, observe that:

〈Φ̄C(z), Φ̄C(z
′)〉H = 2〈ΦR(x,y),ΦR(x

′,y′)〉H
= 2κR((x

′,y′), (x,y)),

for all z, z′ ∈ H. We have to emphasize that a complex RKHS

H (whether it is constructed through the complexification

procedure, or it is produced by a complex kernel) can, always,

be represented as a Cartesian product of a Hilbert space with

itself, i.e., we can, always, identify H with a double real space

H2. Furthermore, the complex inner product of H can always

be related to the real inner product of H as in (2).

In order to compute the gradients of real valued cost func-

tions, which are defined on complex domains, we adopt the

rationale of Wirtinger’s calculus [39]. This was brought into

light recently [32], [33], [40], as a means to compute, in an ef-

ficient and elegant way, gradients of real valued cost functions

that are defined on complex domains (Cν), in the context of

widely linear processing [34], [41]. It is based on simple rules

and principles, which bear a great resemblance to the rules

of the standard complex derivative, and it greatly simplifies

the calculations of the respective derivatives. The difficulty

with real valued cost functions is that they do not obey the

Cauchy-Riemann conditions and are not differentiable in the

complex domain. The alternative to Wirtinger’s calculus would

be to consider the complex variables as pairs of two real ones

and employ the common real partial derivatives. However, this

approach, usually, is more time consuming and leads to more

cumbersome expressions. In [16], the notion of Wirtinger’s

calculus was extended to general complex Hilbert spaces,

providing the tool to compute the gradients that are needed to

develop kernel-based algorithms for treating complex data. In

[42] the notion of Wirtinger calculus was extended to include

subgradients in RKHS.

III. COMPLEX SUPPORT VECTOR REGRESSION

We begin the treatment of the complex case with the

complex SVR rationale, as this is a direct generalization of

the real SVR. Suppose we are given training data of the form

{(zn, dn); n = 1, . . . , N} ⊂ X × C, where X = Cν denotes

the space of input patterns. As zn is complex, we denote by

xn its real part and by yn its imaginary part respectively, i.e.,

zn = xn+iyn, n = 1, . . . , N . Similarly, we denote by drn and

din the real and the imaginary part of dn, i.e., dn = drn + idin,

n = 1, . . . , N .

A. Dual Channel SVR

A straightforward approach for addressing this problem

(as well as any problem related with complex data) is by

considering two different problems in the real domain. This

technique is usually referred to as the dual real channel (DRC)

approach [34]. That is, the training data are split into two
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Fig. 1. The function κr
C
((·, ·)T , (0, 0)T ) of the induced real feature space

of the complex Gaussian kernel.

sets {((xn,yn)
T , drn); n = 1, . . . , N} ⊂ R

2ν × R and

{((xn,yn)
T , din); n = 1, . . . , N} ⊂ R2ν × R, and a support

vector regression is performed on each set of data using a real

kernel κR and its corresponding RKHS. We will show in the

following Sections that the DRC approach is equivalent to the

complexification procedure [16] described in Section II. The

latter, however, often provides a context that enables us to

work with complex data compactly and elegantly, as one may

employ Wirtinger calculus to compute the respective gradients

and develop algorithms directly in complex form [16].

In contrast to the complexification procedure, we emphasize

that the pure complex approach (where one directly exploits a

complex RKHS) considered in the next subsection is quite dif-

ferent from the DRC rationale. We will develop a framework

for solving such a problem on the complex domain employing

pure complex kernels, instead of real ones. Nevertheless, we

will show that using complex kernels for SVR is equivalent

with solving two real problems using a real kernel. This kernel,

however, is induced by the selected complex kernel and it is

not one of the standard kernels appearing in machine learning

literature. For example, the use of the complex Gaussian kernel

induces a real kernel, which is not the standard real Gaussian

RBF (see Figure 1). We demonstrated in [31], [42], although

in a different context than the one we use here, that the DRC

approach and the pure complex approaches give, in general,

different results. Depending on the case, the pure complex

approach might show increased performance over the DRC

approach and vice versa.

B. Pure Complex SVR

Prior to the development of the generalized complex SVR

rationale, we investigate some significant properties of the

complex kernels. In the following, we assume that H is a com-

plex RKHS with kernel κC. We can decompose κC into its real

and imaginary parts, i.e., κC(z, z
′) = κr

C
(z, z′) + iκi

C
(z, z′),

where κr
C
(z, z′), κi

C
(z, z′) ∈ R. As any complex kernel is

Hermitian (see Section II), we have that κ∗
C
(z, z′) = κC(z

′, z)

and hence we take

κr
C(z, z

′) = κr
C(z

′, z), (4)

κi
C(z, z

′) = −κi
C(z

′, z). (5)

Lemma III.1. The imaginary part of any complex kernel, κC,

satisfies:

N
∑

n,m=1

cncmκi
C(zn, zm) = 0, (6)

for any N > 0 and any selection of c1, . . . , cN ∈ C and

z1, . . . , zN ∈ X .

Proof: Exploiting (5) and rearranging the indices of the

summation we get:

N
∑

n,m=1

cncmκi
C(zn, zm) = −

N
∑

n,m=1

cncmκi
C(zm, zn)

= −
N
∑

m,n=1

cmcnκ
i
C(zn, zm).

Hence, 2

N
∑

n,m=1

cncmκi
C(zn, zm) = 0 and the result follows

immediately.

Lemma III.2. If κC(z, z
′) is a complex kernel defined on

Cν × Cν , then its real part, i.e.,

κr
C

((

x

y

)

,

(

x′

y′

))

= Re(κC(z, z
′)), (7)

where z = x+ iy, z′ = x′ + iy′, is a real kernel defined on

R2ν ×R2ν . We call this kernel the induced real kernel of κC.

Proof: As relation (4) implies, κr
C

is symmetric. More-

over, let N > 0, α1, . . . , αN ∈ R and z1, . . . , zN ∈ X . As

κC is positive definite, we have that

N
∑

n,m=1

αnαmκC(zn, zm) ≥ 0.

However, splitting κC to its real and imaginary parts and

exploiting Lemma III.1, we take

N
∑

n,m=1

αnαmκC(zn, zm) =

N
∑

n,m=1

αnαmκr
C(zn, zm)

+i

N
∑

n,m=1

αnαmκi
C(zn, zm) =

N
∑

n,m=1

αnαmκr
C(zn, zm).

Hence,

N
∑

n,m=1

αnαmκr
C(zn, zm) ≥ 0.

As a last step, recall that κr
C

may be regarded as defined

either on Cν × Cν or R2ν × R2ν . This leads to

N
∑

n,m=1

αnαmκr
C

((

xn

yn

)

,

(

xm

ym

))

≥ 0.

We conclude that κr
C

is a positive definite kernel on R
2ν×R

2ν .
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At this point, we are ready to present the SVR rationale in

complex RKHS. We transform the input data from X to H, via

the feature map ΦC, to obtain the data {(ΦC(zn), dn); n =
1, . . . , N}. In analogy with the real case and extending the

principles of widely linear estimation to complex support

vector regression, the goal is to find a function T : H →
C : T (f) = 〈f, w〉H + 〈f∗, v〉H + c, for some u, v ∈ H,

c ∈ C, which is as flat as possible and has at most ǫ deviation

from both the real and imaginary parts of the actually obtained

values dn, for all n = 1, . . . , N . We emphasize that we

employ the widely linear estimation function S1 : H → C :
S1(f) = 〈f, w〉H + 〈f∗, v〉H instead of the usual complex

linear function3 S2 : H → C : S2(f) = 〈f, w〉H following the

ideas of [41], which are becoming popular in complex signal

processing [43]–[45] and have been generalized for the case of

complex RKHS in [42]. It has been established [46], [47], that

the widely linear estimation functions are able to capture the

second order statistical characteristics of the input data, which

are necessary if non-circular4 input sources are considered.

Furthermore, as it has been shown in [31], the exploitation of

the traditional complex linear function excludes a significant

percentage of linear functions from being considered in the

estimation process. The correct and natural linear estimation

in complex spaces is the widely linear one.

Observe that at the training points, i.e., ΦC(zn), T takes the

values T (ΦC(zn)). Following similar arguments as with the

real case, this is equivalent with finding a complex non-linear

function g defined on X such that

g(z) = T ◦ ΦC(z) = 〈ΦC(z), w〉H + 〈Φ∗

C(z), v〉H + c, (8)

for some w, v ∈ H, c ∈ C, which satisfies the aforementioned
properties. We formulate the complex support vector regres-
sion task as follows:

min
w,v,c

1

2
‖w‖2H + 1

2
‖v‖2H + C

N

N
∑

n=1

(ξrn + ξ̂rn + ξin + ξ̂in)

s. t.























Re(〈ΦC(zn), w〉H + 〈ΦC(zn), v〉H + c− dn) ≤ ǫ+ ξrn
Re(dn − 〈ΦC(zn), w〉H − 〈Φ∗

C(zn), v〉H − c) ≤ ǫ+ ξ̂rn
Im(〈ΦC(zn), w〉H + 〈ΦC(zn), v〉H + c− dn) ≤ ǫ+ ξin
Im(dn − 〈ΦC(zn), w〉H − 〈Φ∗

C(zn), v〉H − c) ≤ ǫ+ ξ̂in
ξrn, ξ̂

r
n, ξ

i
n, ξ̂

i
n ≥ 0

(9)

To solve (9), we derive the Lagrangian and the KKT

3All other attempts to generalize the SVR rationale to complex and
hypercomplex spaces employed the standard complex linear function S2.

4Note that the issue of circularity has become quite popular recently in
the context of complex adaptive filtering. Circularity is intimately related
to rotation in the geometric sense. A complex random variable Z is called
circular, if for any angle φ both Z and Zeiφ (i.e., the rotation of Z by angle
φ) follow the same probability distribution [34].

conditions to obtain the dual problem. Thus we take:

L = 1

2
‖w‖2 + 1

2
‖v‖2 + C

N

N
∑

n=1

(ξrn + ξ̂rn + ξin + ξ̂in)

+
N
∑

n=1

an(Re(〈ΦC(zn), w〉H + 〈ΦC(zn), v〉H + c− dn)− ǫ− ξrn)

+
N
∑

n=1

ân(Re(dn − 〈ΦC(zn), w〉H − 〈Φ∗

C(zn), v〉H − c)− ǫ− ξ̂rn)

+

N
∑

n=1

bn(Im(〈ΦC(zn), w〉H + 〈ΦC(zn), v〉H + c− dn)− ǫ − ξin)

+
N
∑

n=1

b̂n(Im(dn − 〈ΦC(zn), w〉H − 〈Φ∗

C(zn), v〉H − c) − ǫ + ξ̂in)

−
N
∑

n=1

ηnξ
r
n −

N
∑

n=1

η̂nξ̂
r
n −

N
∑

n=1

θnξ
i
n −

N
∑

n=1

θ̂nξ̂
i
n,

(10)

where an, ân, bn, b̂n, ηn, η̂n, θn, θ̂n are the Lagrange
multipliers. To exploit the saddle point conditions, we employ
the rules of Wirtinger calculus for the complex variables on
complex RKHS as described in [16] and deduce that

∂L

∂w∗

=
1

2
w +

1

2

N
∑

n=1

anΦC(zn)−
1

2

N
∑

n=1

ânΦC(zn)

−
i

2

N
∑

n=1

bnΦC(zn) +
i

2

N
∑

n=1

b̂nΦC(zn),

∂L

∂v∗
=
1

2
v +

1

2

N
∑

n=1

anΦ
∗

C(zn)−
1

2

N
∑

n=1

ânΦ
∗

C(zn)

−
i

2

N
∑

n=1

bnΦ
∗

C(zn) +
i

2

N
∑

n=1

b̂nΦ
∗

C(zn),

∂L

∂c∗
=
1

2

N
∑

n=1

an −
1

2

N
∑

n=1

ân +
i

2

N
∑

n=1

bn −
i

2

N
∑

n=1

b̂n.

For the real variables we compute the gradients in the tradi-

tional way:

∂L
∂ξr

n

= C
N

− an − ηn,
∂L

∂ξ̂r
n

= C
N

− ân − η̂n,
∂L
∂ξi

n

= C
N

− bn − θn,
∂L

∂ξ̂i
n

= C
N

− b̂n − θn.

for all n = 1, . . . , N .
As all gradients have to vanish for the saddle point condi-

tions, we finally take that

w =

N
∑

n=1

(ân − an)ΦC(zn)− i

N
∑

n=1

(b̂n − bn)ΦC(zn), (11)

v =
N
∑

n=1

(ân − an)Φ
∗

C(zn)− i
N
∑

n=1

(b̂n − bn)Φ
∗

C(zn), (12)

N
∑

n=1

(ân − an) =

N
∑

n=1

(b̂n − bn) = 0, (13)

ηn = C
N

− an, η̂n = C
N

− ân,

θn = C
N

− bn, θ̂n = C
N

− b̂n,
(14)

for n = 1, . . . , N .
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Fig. 2. Pure complex SVR. The difference with the dual channel approach is due to the incorporation of the induced real kernel κr
C

, which depends on the
selection of the complex kernel κC. In this context one exploits the complex structure of the space, which is lost in the dual channel approach.

To compute ‖w‖2
H

= 〈w,w〉H, we apply equation

(11), Lemma III.1, the reproducing property of H, i.e.,

〈Φ(zn),Φ(zm)〉H = κC(zm, zn), and the sesqui-linear prop-

erty of the inner product of H to obtain that:

‖w‖2H =

N
∑

n,m=1

(ân − an)(âm − am)κr
C(zm, zn)

+
N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C(zm, zn)

+ 2

N
∑

n,m=1

(ân − an)(b̂m − bm)κi
C(zm, zn).

Similarly, we have

‖v‖2H =

N
∑

n,m=1

(ân − an)(âm − am)κr
C(zm, zn)

+

N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C(zm, zn)

− 2
N
∑

n,m=1

(ân − an)(b̂m − bm)κi
C(zm, zn),

and

〈ΦC(zn), w〉H + 〈Φ∗
C
(zn), v〉H

2
=

N
∑

m=1

(âm − am)κr
C(zm, zn)

+ i

N
∑

m=1

(b̂m − bm)κr
C(zm, zn).

Eliminating ηn, η̂n, θn, θ̂n via (14) and w, v via the
aforementioned relations, we obtain the final form of the

Lagrangian:

L = −

N
∑

n,m=1

(ân − an)(âm − am)κr
C(zm,zn)

−

N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C(zm,zn)

−ǫ

N
∑

n=1

(an + ân + bn + b̂n)

+
N
∑

n=1

drn(ân − an) +
N
∑

n=1

din(b̂n − bn),

(15)

where drn, din are the real and imaginary parts of the output dn,
n = 1, . . . , N . This means that we can split the dual problem
into two separate maximization tasks:

maximize
a,â























−

N
∑

n,m=1

(ân − an)(âm − am)κr
C(zm,zn)

−ǫ

N
∑

n=1

(ân + an) +

N
∑

n=1

drn(ân − an)

subject to

N
∑

n=1

(ân − an) = 0 and an, ân ∈ [0, C/N ],

(16a)

and

maximize
b,b̂























−
N
∑

n,m=1

(b̂n − bn)(b̂m − bm)κr
C(zm,zn)

−ǫ
N
∑

n=1

(b̂n + bn) +
N
∑

n=1

din(b̂n − bn)

subject to

N
∑

n=1

(b̂n − bn) = 0 and bn, b̂n ∈ [0, C/N ].

(16b)

Observe that (16a) and (16b) are equivalent with the dual

problem of a standard real support vector regression task with

kernel 2κr
C

. This is a real kernel, as Lemma III.2 establishes.

Therefore (Figure 2), one may solve the two real SVR tasks

for an, ân, cr and bn, b̂n, ci, respectively, using any one of the

algorithms which have been developed for this purpose, and
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then combine the two solutions to find the final non-linear

solution of the complex problem as

g(z) =〈ΦC(z), w〉H + 〈Φ∗

C(z), v〉H + c

=2

N
∑

n=1

(ân − an)κ
r
C(zn, z) (17)

+ 2i

N
∑

n=1

(b̂n − bn)κ
r
C(zn, z) + c.

In this paper we are focusing mainly on the complex Gaussian

kernel. It is important to emphasize that, in this case, the

induced kernel κr
C

is not the real Gaussian RBF. Figure 1

shows the element κr
C
(·, (0, 0)T ) of the induced real feature

space.

Remark III.1. For the complexification procedure, we select

a real kernel κR and transform the input data from X to

the complexified space H, via the feature map Φ̄C, to obtain

the data {(Φ̄C(zn), dn); n = 1, . . . , N}. Following a similar

procedure as the one described above and considering that

〈Φ̄C(zn), Φ̄C(zm)〉H = 2κR(zm, zn)

we can easily deduce that the dual of the complexified SVR

task is equivalent to two real SVR tasks employing the kernel

2κR. Hence, the complexification technique is identical to the

DRC approach.

IV. COMPLEX SUPPORT VECTOR MACHINE

A. Complex hyperplanes

Recall that in any real Hilbert space H, a hyperplane

consists of all the elements f ∈ H that satisfy

〈f, w〉H + c = 0, (18)

for some w ∈ H, c ∈ R. Moreover, as Figure 3 shows, any

hyperplane of H divides the space into two parts, H+ = {f ∈
H; 〈f, w〉H+c > 0} and H− = {f ∈ H; 〈f, w〉H+c < 0}. In

the traditional SVM classification task the goal is to separate

two distinct classes of data by a maximum margin hyperplane,

so that one class falls into H+ and the other into H−

(excluding some outliers). In order to be able to generalize

the SVM rationale to complex spaces, firstly, we need to

determine an appropriate definition for a complex hyperplane.

The difficulty is that the set of complex numbers is not an

ordered one, and thus one may not assume that a complex

version of (18) divides the space into two parts, as H+ and H−

cannot be defined. Instead, we will provide a novel definition

of complex hyperplanes that divide the complex space into

four parts. This will be our kick off point for deriving the

complex SVM rationale, which classifies objects into four

(instead of two) classes.

Lemma IV.1. The relations

Re (〈f, w〉H + c) = 0, (19a)

Im (〈f, w〉H + c) = 0, (19b)

for some w ∈ H, c ∈ C, where f ∈ H, represent two

orthogonal hyperplanes of the doubled real space, i.e., H2,

in general positions.

Fig. 3. A hyperplane separates the space H into two parts, H+ and H−.

Proof: Observe that

〈f, w〉H = 〈f r, wr〉H + 〈f i, wi〉H + i(〈f i, wr〉H − 〈f r, wi〉H),

where f = f r + if i, w = wr + iwi. Hence, we take that
〈(

f r

f i

)

,

(

wr

wi

)〉

H2

+ cr = 0

and
〈(

f r

f i

)

,

(

−wi

wr

)〉

H2

+ ci = 0,

where c = cr+ ici. These are two distinct hyperplanes of H2.

Moreover, as

(

−wi wr
)

(

wr

wi

)

= 0,

the two hyperplanes are orthogonal.

Lemma IV.2. The relations

Re (〈f, w〉H + 〈f∗, v〉H + c) = 0, (20a)

Im (〈f, w〉H + 〈f∗, v〉H + c) = 0, (20b)

for some w, v ∈ H, c ∈ C, where f ∈ H, represent two

hyperplanes of the doubled real space, i.e., H2. Depending on

the values of w, v, these hyperplanes may be placed arbitrarily

on H2.

Proof: Following a similar rationale as in the proof of

Lemma IV.1, we take
〈(

f r

f i

)

,

(

wr + vr

wi − vi

)〉

H2

+ cr = 0

and
〈(

f r

f i

)

,

(

−(wi + vi)
wr − vr

)〉

H2

+ ci = 0,

where f = f r+if i, w = wr+iwi, v = vr+ivi, c = cr+ici.

The following Definition comes naturally.

Definition IV.1. Let H be a complex Hilbert space. We define

the complex pair of hyperplanes as the set of all f ∈ H that

satisfy one of the following relations

Re (〈f, w〉H + 〈f∗, v〉H + c) = 0, (21a)

Im (〈f, w〉H + 〈f∗, v〉H + c) = 0, (21b)

for some w, v ∈ H, c ∈ C.
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Fig. 4. A complex pair of hyperplanes separates the space of complex
numbers (i.e., H = C) into four parts.

Lemmas IV.1 and IV.2 demonstrate the significant difference

between complex linear estimation and widely linear estima-

tion functions, which has been, already, pointed out in Section

III-B, albeit in a different context. The complex linear case is

quite restrictive, as the couple of complex hyperplanes are

always orthogonal. On the other hand, the widely linear case

is more general and covers all cases. The complex pair of

hyperplanes (as defined by definition IV.1) divides the space

into four parts, i.e.,

H++ =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) > 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) > 0

}

,

H+− =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) > 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) < 0

}

,

H−+ =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) < 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) > 0

}

,

H−− =

{

f ∈ H;
Re (〈f, w〉H + 〈f∗, v〉H + c) < 0,
Im (〈f, w〉H + 〈f∗, v〉H + c) < 0

}

.

Figure 4 demonstrates a simple case of a complex pair of

hyperplanes that divides C into four parts. Note that in some

cases the complex pair of hyperplanes might degenerate into

two identical hyperplanes or two parallel hyperplanes.

B. The quaternary complex SVM

The complex SVM classification task can be formulated

as follows. Suppose we are given training data, which be-

long to four separate classes C++, C+−, C−+, C−−, i.e.,

{(zn, dn); n = 1, . . . , N} ⊂ X × {±1± i)}. If dn = +1+ i,
then the n-th sample belongs to C++, i.e., zn ∈ C++, if

dn = 1 − i, then zn ∈ C+−, if dn = −1 + i, then

zn ∈ C−+ and if dn = −1 − i, then zn ∈ C−−. Consider

the complex RKHS H with respective kernel κC. Following

a similar rationale to the real case, we transform the input

data from X to H, via the feature map ΦC. The goal of the

SVM task is to estimate a complex pair of maximum margin

hyperplanes that separates the points of the four classes (see

Figure 5). Thus, we need to minimize

∥

∥

∥

∥

(

wr + vr

wi − vi

)∥

∥

∥

∥

2

H2

+

∥

∥

∥

∥

(

−(wi + vi)
wr − vr

)∥

∥

∥

∥

2

H2

=

‖wr + vr‖2H + ‖wi − vi‖2H + ‖(wi + vi)‖2H + ‖wr − vr‖2H =

2‖wr‖2H + 2‖wi‖2H + 2‖vr‖2H + 2‖vi‖2H =

2(‖w‖2H + ‖v‖2H).

Fig. 5. A complex pair of hyperplanes that separates the four given classes.
The hyperplanes are chosen so that to maximize the margin between the
classes.

Therefore, the primal complex SVM optimization problem
can be formulated as

min
w,v,c

1

2
‖w‖2H + 1

2
‖v‖2H + C

N

N
∑

n=1

(ξrn + ξin)

s. to







drn Re (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), v〉H + c) ≥ 1− ξrn
din Im (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), w〉H + c) ≥ 1− ξin
ξrn, ξ

i
n ≥ 0

for n = 1, . . . , N.
(22)

The Lagrangian function becomes

L(w, v,a, b) =
1

2
‖w‖2H +

1

2
‖v‖2H +

C

N

N
∑

n=1

(ξrn + ξin)

−

N
∑

n=1

an (drn Re (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), v〉H + c)− 1 + ξrn)

−

N
∑

n=1

bn
(

din Im (〈ΦC(zn), w〉H + 〈Φ∗

C(zn), w〉H + c)− 1 + ξin

)

−
N
∑

n=1

ηnξ
r
n −

N
∑

n=1

θnξ
i
n,

where an, bn, ηn and θn are the positive Lagrange multipliers

of the respective inequalities, for n = 1, . . . , N . To exploit the

saddle point conditions of the Lagrangian function, we employ

the rules of Wirtinger calculus to compute the respective

gradients. Hence, we take

∂L

∂w∗
=

1

2
w − 1

2

N
∑

n=1

and
r
nΦC(zn) +

i

2

N
∑

n=1

bnd
i
nΦC(zn)

∂L

∂v∗
=

1

2
v − 1

2

N
∑

n=1

and
r
nΦ

∗

C(zn) +
i

2

N
∑

n=1

bnd
i
nΦ

∗

C(zn)

∂L

∂c∗
=

1

2

N
∑

n=1

and
r
n +

i

2

N
∑

n=1

bnd
i
n

and

∂L

∂ξrn
=

C

N
− an − ηn,

∂L

∂ξin
=

C

N
− bn − θn.

for n = 1, . . . , N . As all the gradients have to vanish, we
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finally take that

w =

N
∑

n=1

(and
r
n − ibnd

i
n)ΦC(zn)

v =

N
∑

n=1

(and
r
n − ibnd

i
n)Φ

∗

C(zn)

N
∑

n=1

and
r
n =

N
∑

n=1

bnd
i
n = 0

and

an + ηn =
C

N
, bn + θn =

C

N

for n = 1, . . . , N . Following a similar procedure as in the

complex SVR case, it turns out that the dual problem can be

split into two separate maximization tasks:

maximize
a

N
∑

n=1

an −
N
∑

n,m=1

anamdrnd
r
mκr

C(zm, zn)

subject to











N
∑

n=1

and
r
n = 0

0 ≤ an ≤ C
N

for n = 1, . . . , N

(23a)

and

maximize
b

N
∑

n=1

bn −
N
∑

n,m=1

bnbmdind
i
mκr

C(zm, zn)

subject to











N
∑

n=1

bnd
i
n = 0

0 ≤ bn ≤ C
N

for n = 1, . . . , N.

(23b)

Observe that, similar to the regression case, these prob-

lems are equivalent with two distinct real SVM (dual) tasks

employing the induced real kernel 2κr
C

. One may split the

(output) data to their real and imaginary parts, as Figure 6

demonstrates, solve two real SVM tasks employing any one

of the standard algorithms and, finally, combine the solutions

to take the complex labeling function:

g(z) = sign
i

(〈ΦC(z), w〉H + 〈Φ∗
C(z), v〉H + c)

= sign
i

(

2
N
∑

n=1

(and
r
n + ibnd

i
n)κ

r
C(zn, z) + cr + ici

)

,

where signi(z) = sign(Re(z)) + i sign(Im(z)).

Remark IV.1. Following the complexification procedure, as

in Remark III.1, we select a real kernel κR and transform

the input data from X to the complexified space H, via the

feature map Φ̄C. We can easily deduce that the dual of the

complexified SVM task is equivalent to two real SVM tasks

employing the kernel 2κR.

Remark IV.2. It is evident that both the complex and the

complexified SVM can be employed for binary classification

as well. The advantage in this case is that one is able to handle

complex input data in both scenarios. Moreover, the popular

one-versus-one and one-versus-all strategies [1], [6], which

address multiclassification problems, can be directly applied

to complex inputs using either the complex or the complexified

binary SVM.

V. EXPERIMENTS

In order to illuminate the advantages that are gained by the

complex kernels and to demonstrate the performance of the

proposed algorithmic schemes, we compare it with standard

real-valued technics and the dual real channel approach, under

various regression and classification scenarios. In the follow-

ing, we will refer to the pure complex kernel rationale and the

complexification trick, presented in this paper, using the terms

CSVR (or CSVM) and complexified SVR (or complexified

SVM) respectively. The dual real channel approach, outlined

in Section III-A, will be denoted as DRC-SVR. Recall that

the DRC approach is equivalent to the complexified rationale,

although the latter often provides for more compact formulas

and simpler representations. The following experiments were

implemented in Matlab. The respective code can be found in

bouboulis.mysch.gr/kernels.html.

A. SVR - Function Estimation

In this Section, we perform a simple regression test on

the complex function sinc(z). An orthogonal grid of 33 × 9
actual points of the sinc function, corrupted by noise, was

adopted as the training data. Figures 7 and 8 show the real

and imaginary parts of the reconstructed function using the

CSVR rationale. Note the excellent visual results obtained

by the corrupted training data. Figures 9, 10 and Table I

compare the square errors (i.e. |d̂n − sinc(zn)|2, where d̂n
is the value of the estimated function at zn) between the

CSVR and the DRC-SVR over 100 different realizations of

the experiment. In each realization, the sinc function was

corrupted by white noise of the form Z = X + iY , where

X and Y are real random variables following the Gaussian

distribution with variances σ1 = 0.4 and σ2 = 0.3 respectively.

As it is shown in Table I, the DRC-SVR fails to capture the

complex structure of the function. On the other hand, the

CSVR rationale provides for an estimation function, which

exhibits excellent characteristics. A closer look at Figures 9

and 10 reveals that at the border of the training grid the

square error increases in some cases. This is expected, as

the available information (i.e., the neighboring points), which

it is exploited by the SVR algorithm, is reduced in these

areas compared to the interior points of the grid. Besides the

significant decrease in the square error, in these experiments

we also observed a significant reduction in the computing

time needed for the CSVR compared to the DRC-SVR. In our

opinion, this enhanced performance (both in terms of MSE and

computational time) is due to the special structure of the sinc
function. Recall that the sinc is a complex analytic function,

hence it is more natural to use complex analytic functions

(e.g., the complex Gaussian kernel function), instead of real

analytic functions (e.g., the real Gaussian kernel), to estimate

its shape. Both algorithms were implemented in MatLab on a
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Fig. 6. Pure Complex support vector machine.

CSVR DRC-SVR

Mean MSE (dB) -15.75 dB -10.42 dB

Mean number of Support Vectors 282 282

Mean Time 179 secs 430 secs

TABLE I
THE MEAN SQUARE ERRORS, THE NUMBER OF SUPPORT VECTORS AND

THE COMPUTING TIME OVER 100 REALIZATIONS OF THE sinc ESTIMATION

EXPERIMENT.

computer with a Core i5 650 microprocessor running at 3.2

GHz.

In all the performed experiments, the SMO algorithm was

employed using the complex Gaussian kernel and the real

Gaussian kernel for the CSVR and the DRC-SVR, respec-

tively (see [48]). The parameters of the kernel for both the

complex SVR and the DRC-SVR tasks were tuned (using

cross-correlation) to provide the smallest mean square error.

In particular for the CSVR, the parameter of the complex

Gaussian kernel was set to t = 0.3, while for the DRC-SVR

the parameter was set to t = 2. In both cases the parameters

of the SVR task were set as C = 1000, ǫ = 0.1.

B. SVR - Channel Identification

In this Section, we consider a non-linear channel identifica-

tion task (see [32]). This channel consists of the 5-tap linear

component:

t(n) =

5
∑

k=1

h(k) · s(n− k + 1), (24)

where

h(k) = 0.432

(

1 + cos

(

2π(k − 3)

5

)

−

(

1 + cos
2π(k − 3)

10

)

i

)

,

for k = 1, . . . , 5, and the nonlinear component:

x(n) = t(n) + (0.15− 0.1i)t2(n).

This is a standard model that has been extensively used in the

literature for such tasks, e.g., [16], [27], [31], [42], [49]. At the

receiver’s end, the signal is corrupted by white Gaussian noise

C t

1000 1/62

2000 1/62

5000 1/82

10000 1/92

20000 1/112

50000 1/132

TABLE II
THE VALUES OF C AND t THAT MINIMIZE THE MEAN SQUARE ERROR OF

THE CSVR, FOR THE CHANNEL IDENTIFICATION TASK.

and then observed as yn. The signal-to-noise ratio (SNR) was

set to 15 dB. The input signal that was fed to the channel had

the form

s(n) =
(

√

1− ρ2X(n) + iρY (n)
)

, (25)

where X(n) and Y (n) are Gaussian random variables. This

input is circular for ρ =
√
2/2 and highly non-circular if

ρ approaches 0 or 1 [32]. The CSVR and the DRC-SVR

rationales were used to address the channel identification task,

which aims to discover the input-out relationship between

(s(n−L+1), s(n−L+2), . . . , s(n)) and y(n) (the parameter

L was set to L = 5). In each experiment, a set of 150 pairs

of samples was used to perform the training. After training, a

set of 600 pairs of samples was used to test the estimation’s

performance of both algorithms (i.e., to measure the mean

square error between the actual channel output, x(n), and the

estimated output, x̂(n)). To find the best possible values of

the parameters C and t, that minimize the mean square error

for both SVR tasks, an extensive cross-validation procedure

has been employed (see Tables II, III) in a total of 20 sets

of data. Figure 11 shows the minimum mean square error,

which has been obtained for all values of the kernel parameter

t versus the SVR parameter C for both cases considering a

circular input (see also Figure 13). It is evident, that the CSVR

approach significantly outperforms the DRC-SVR rationale,

both in terms of MSE and computational time (Figure 12).

All the Figures refer to the circular case. As the results for the

non-circular case are similar, they are omitted to save space.
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Fig. 7. The real part (Re(sinc(z))) of the estimated sinc
function from the complex SVR. The points shown in the
Figure are the real parts of the noisy training data used in the
simulation.
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in the simulation.
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C t

1000 1/42

2000 1/52

5000 1/62

10000 1/72

20000 1/72

50000 1/102

TABLE III
THE VALUES OF C AND t THAT MINIMIZE THE MEAN SQUARE ERROR OF

THE DRC-SVR, FOR THE CHANNEL IDENTIFICATION TASK.

C. SVR - Channel Equalization

In this Section, we present a non-linear channel equalization

task that consists of the linear filter (24) and the memoryless

nonlinearity

x(n) = t(n) + (0.1− 0.15i) · t2(n)
At the receiver end of the channel, the signal is corrupted by

white Gaussian noise and then observed as y(n). The signal-

to-noise ratio was set to 15 dB. The input signal that was fed

to the channels had the form

s(n) = 0.30
(

√

1− ρ2X(n) + iρY (n)
)

, (26)
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Fig. 11. MSE versus the SVR parameter C for both the CSVR and the
DRC-SVR rationales, for the channel identification task.

where X(n) and Y (n) are Gaussian random variables.

The aim of a channel equalization task is to construct an

inverse filter, which acts on the output y(n) and reproduces

the original input signal as close as possible. To this end, we

apply the CSVR and DRC-SVR algorithms to a set of samples

of the form

((y(n+D), y(n+D − 1), . . . , r(y +D − L+ 1)), s(n)) ,

where L > 0 is the filter length and D the equalization time
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Fig. 13. The number of Support Vectors versus MSE (dB) for both the
CSVR and the DRC-SVR rationales, for the channel identification task.

delay (in this experiment we set L = 5 and D = 2).

Similar to the channel identification case, in each experi-

ment, a set of 150 pairs of samples was used to perform the

training. After training, a set of 600 pairs of samples was used

to test the performance of both algorithms (i.e., to measure

the mean square error between the actual input, s(n), and the

estimated input, ŝ(n)). To find the best possible values of the

parameters C and t, that minimize the mean square error for

both SVR tasks, an extensive cross-validation procedure has

been employed (see Tables IV, V) in a total of 100 sets of data.

Figure 14 shows the minimum mean square error, which has

been obtained for all values of the kernel parameter t, versus

the SVR parameter C, for both cases considering a circular

input. Figures 15 and 16 show the computational time and

the support vectors versus the MSE. The CSVR appears to

achieve a slightly lower MSE for all values of the parameter

C, at the cost of a slightly increased computational time. The

results for the non-circular case are similar.

D. SVM - Multiclass Classification

We conclude the experimental Section with the classifica-

tion case. We performed two experiments using the popular

MNIST database of handwritten digits [50]. In both cases, the

respective parameters of the SVM tasks were tuned to obtain

the lowest error rate possible. The MNIST database contains

60000 handwritten digits (from 0 to 9) for training and 10000

handwritten digits for testing. Each digit is encoded as an

image file with 28×28 pixels. To quantify the performance of

an SVM-like learning machine on the MNIST database, one

C t

1 1/2.52

2 1/2.52

5 1/2.52

10 1/32

50 1/4.52

100 1/5.52

200 1/62

500 1/72

1000 1/92

TABLE IV
THE VALUES OF C AND t THAT MINIMIZE THE MEAN SQUARE ERROR OF

THE CSVR, FOR THE CHANNEL EQUALIZATION TASK.

C t

1 1/1.52

2 1/1.752

5 1/1.752

10 1/2.252

50 1/2.52

100 1/32

200 1/52

500 1/72

1000 1/7.52

TABLE V
THE VALUES OF C AND t THAT MINIMIZE THE MEAN SQUARE ERROR OF

THE DRC-SVR, FOR THE CHANNEL EQUALIZATION TASK.

typically employs a one-versus-all strategy to the training set

(using the raw pixel values as input data) and then measures

the success using the testing set [51], [52].

In the first experiment, we compare the aforementioned

standard one-versus-all scenario with a classification task that

exploits complex numbers. In the complex variant, we perform

a Fourier transform to each training image and keep only

the 100 most significant coefficients. As these coefficients are

complex numbers, we employ a one-versus-all classification

task using the binary complexified SVM rationale (see Remark

IV.2). In both scenarios we use the first 6000 digits of the

MNIST training set (instead of the complete 60000 digits that

are included in the database) to train the learning machines and

test their performances using the 10000 digits of the testing

set. In addition, we used the Gaussian kernel with t = 1/64
and t = 1/1402, respectively. The SVM parameter C has

raw data complex Fourier coefficients

Error rate 3.79% 3.46%

TABLE VI
THE ERROR RATES OF THE ONE-VERSUS-ALL CLASSIFICATION TASK FOR

THE 10000 TESTING DIGITS OF THE MNIST DATABASE.

one versus three SVM quaternary SVM

Error rate 0.721% 0.866%

TABLE VII
THE ERROR RATES OF THE ONE-VERSUS-THREE CLASSIFICATION TASK

FOR THE 0, 1, 2 AND 3 TESTING DIGITS OF THE MNIST DATABASE.
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DRC-SVR rationales, for the channel equalization task.

been set equal to 100 in this case as well. The error rate of

the standard real-valued scenario is 3.79%, while the error rate

of the complexified (one-versus-all) SVM is 3.46% (see Table

VI). In both learning tasks we used the SMO algorithm to

train the SVM. The total amount of time needed to perform

the training of each learning machine is almost the same for

both cases (the complexified task is slightly faster).

In Section IV, we discussed how the 4-classes problem

is inherent to the complex SVM. Exploiting the notion of

the complex pair of hyperplanes (see Figure 4), we have

shown that the generalization of the SVM rationale to complex

spaces directly assumes quaternary classification. Using this

approach, the 4 classes problem can be solved using only

2 distinct SVM tasks instead of the 4 tasks needed by the

one-versus-three or the one-versus-one strategies. The second

experiment compares the quaternary complex SVM approach

to the standard one-versus-three scenario using the first four

digits (0, 1, 2 and 3) of the MNIST database. In both cases

we used the first 6000 such digits of the MNIST training set

to train the learning machines. We tested their performance

using the respective digits that are contained in the testing

set. The error rate of the one-versus-three SVM was 0.721%,

while the error rate of the complexified quaternary SVM was

0.866% (see Table VII). However, the one-versus-three SVM

task required about double the time for training, compared

to the complexified quaternary SVM. This is expected, as the

latter solves half as many distinct SVM tasks as the first one. In

both experiments we used the Gaussian kernel with t = 1/49
and t = 1/1602 respectively. The SVM parameter C has been
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Fig. 16. The number of support Vectors versus MSE (dB) for both the CSVR
and the DRC-SVR rationales, for the channel equalization task.

set equal to 100 in this case also.

VI. CONCLUSIONS

A new framework for support vector regression and quater-

nary classification for complex data has been presented, based

on the notion of the widely-linear estimation. Both complex

kernels as well as complexified real ones have been used.

We showed that this problem is equivalent to solving two

separate real SVM tasks employing an induced real kernel

(Figure 2). The induced kernel depends on the choice of the

complex kernel and it is different to the standard kernels

used in the literature. Although the machinery presented here

might seem similar to the dual channel approach, there are

important differences. The most important one is due to the

incorporation of the induced kernel κr
C

, which allows us to

exploit the complex structure of the space, which is lost in

the dual channel approach. As an example, we studied the

complex Gaussian kernel and showed by example that the

induced kernel is not the real Gaussian RBF. To the best

of our knowledge, this kernel has not appeared before in

the literature. Hence, treating complex tasks directly in the

complex plane, opens the way of employing novel kernels.

Furthermore, for the classification problem we have shown

that the complex SVM solves directly a quaternary problem,

instead of the binary problem, which is associated with the

real SVM. Hence, the complex SVM not only provides the

means for treating complex inputs, but also offers an alterna-

tive strategy to address multiclassification problems. In this

way, such problems can be solved significantly faster (the

computational time is almost the half), at the cost of increased

error rate. Although, in the present work we focused on the

4 classes problem only, it is evident that the same rationale

can be carried out to any multidimensional problem, where the

classes must be divided into four groups each time, following

a rationale similar to the one-versus-all mechanism. This will

be addressed at a future time.
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